Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Int J Biol Macromol ; 265(Pt 2): 130793, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38503368

RESUMO

Cellulose nanocrystals (CNCs) can form a liquid crystal film with a chiral nematic structure by evaporative-induced self-assembly (EISA). It has attracted much attention as a new class of photonic liquid crystal material because of its intrinsic, unique structural characteristics, and excellent optical properties. However, the CNCs-based photonic crystal films are generally prepared via the physical crosslinking strategy, which present water sensitivity. Here, we developed CNCs-g-PAM photonic crystal film by combining free radical polymerization and EISA. FT-IR, SEM, POM, XRD, TG-DTG, and UV-Vis techniques were employed to characterize the physicochemical properties and microstructure of the as-prepared films. The CNCs-g-PAM films showed a better thermo-stability than CNCs-based film. Also, the mechanical properties were significantly improved, viz., the elongation at break was 9.4 %, and tensile strength reached 18.5 Mpa, which was a much better enhancement than CNCs-based film. More importantly, the CNCs-g-PAM films can resist water dissolution for more than 24 h, which was impossible for the CNCs-based film. The present study provided a promising strategy to prepare CNCs-based photonic crystal film with high flexibility, water resistance, and optical properties for applications such as decoration, light management, and anti-counterfeiting.


Assuntos
Nanopartículas , Água , Água/química , Polimerização , Celulose/química , Espectroscopia de Infravermelho com Transformada de Fourier , Nanopartículas/química
2.
Int J Biol Macromol ; 264(Pt 1): 130453, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38432279

RESUMO

Periodate oxidation has been the widely accepted route for obtaining aldehyde group-functionalized polysaccharides but significantly influenced the various physicochemical properties due to the ring opening of the backbone of polysaccharides. The present study, for the first time, presents a novel method for the preparation of aldehyde group-functionalized polysaccharides that could retain the ring structure and the consequent rigidity of the backbone. Pectin was collected as the representative of polysaccharides and modified with cyclopropyl formaldehyde to obtain pectin aldehyde (AP), which was further crosslinked by DL-lysine (LYS) via the Schiff base reaction to prepare injectable hydrogel. The feasibility of the functionalization was proved by FT-IR and 1H NMR techniques. The obtained hydrogel showed acceptable mechanical properties, self-healing ability, syringeability, and sustained-release performance. Also, as-prepared injectable hydrogel presented great biocompatibility with a cell proliferation rate of 96 %, and the drug-loaded hydrogel exhibited clear inhibition of cancer cell proliferation. Overall, the present study showed a new method for the preparation of aldehyde group-functionalized polysaccharides, and the drug-loaded hydrogel has potential in drug release applications.


Assuntos
Hidrogéis , Pectinas , Hidrogéis/química , Aldeídos , Espectroscopia de Infravermelho com Transformada de Fourier , Polissacarídeos/química
3.
Int J Biol Macromol ; 251: 126276, 2023 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-37582429

RESUMO

Injectable hydrogel-based drug delivery systems have attracted more and more attention due to their sustained-release performance, biocompatibility, and 3D network. The present study showed whole pectin-based hydrogel as an injectable drug delivery system, which was developed from oxidized pectin (OP) and diacylhydrazine adipate-functionalized pectin (Pec-ADH) via acylhydrazone linkage. The as-prepared hydrogels were characterized by 1H NMR, FT-IR, and SEM techniques. The equilibrium swelling ratio of obtained hydrogel (i.e., sample gel 5) was up to 4306.65 % in the distilled water, which was higher than that in PBS with different pH values. Increasing the pH of the swelling media, the swelling ratio of all hydrogels decreased significantly. The results that involved the swelling properties indicated the salt- and pH-responsiveness of the as-prepared hydrogels. The drug release study presented that 5-FU can be persistently released for more than 12 h without sudden release. Moreover, the whole pectin-based hydrogel presented high cytocompatibility toward L929 cell lines, and the drug delivery system showed a high inhibitory effect on MCF-7 cell lines. All these results manifested that the acylhydrazone-derived whole pectin-based hydrogel was an excellent candidate for injectable drug delivery systems.

4.
ChemSusChem ; 16(21): e202300518, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37501498

RESUMO

The cellulose-based hydrogel has occupied a pivotal position in almost all walks of life. However, the native cellulose can not be directly used for preparing hydrogel due to the complex non-covalent interactions. Some literature has discussed the dissolution and modification of cellulose but has yet to address the influence of the pretreatment on the as-prepared hydrogels. Firstly, the "touching" of cellulose by derived and non-derived solvents was introduced, namely, the dissolution of cellulose. Secondly, the "conversion" of functional groups on the cellulose surface by special routes, which is the modification of cellulose. The above-mentioned two parts were intended to explain the changes in physicochemical properties of cellulose by these routes and their influences on the subsequent hydrogel preparation. Finally, the "reinforcement" of cellulose-based hydrogels by physical and chemical techniques was summarized, viz., improving the mechanical properties of cellulose-based hydrogels and the changes in the multi-level structure of the interior of cellulose-based hydrogels.

5.
Int J Biol Macromol ; 243: 125200, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37271270

RESUMO

A one-pot route for the preparation of TiO2@carbon nanocomposite from Ti4+/polysaccharide coordination complex has been developed and shown advantages in operation, cost, environment, etc. However, the photodegradation rate of methylene blue (MB) needs to be improved. N-doping has been proven as an efficient means to enhance photodegradation performance. Thus, the present study upgraded the TiO2@carbon nanocomposite to N-doped TiO2@carbon nanocomposite (N-TiO2@C) from Ti4+-dopamine/sodium alginate multicomponent complex. The composites were characterized by FT-IR, XRD, XPS, UV-vis DRS, TG-DTA, and SEM-EDS. The obtained TiO2 was a typical rutile phase, and the carboxyl groups existed on N-TiO2@C. The photocatalyst consequently showed high removal efficiency of MB. The cycling experiment additionally indicated the high stability of N-TiO2@C. The present work provided a novel route for preparing N-TiO2@C. Moreover, it can be extended to prepare N-doped polyvalent metal oxides@carbon composites from all water-soluble polysaccharides such as cellulose derivatives, starch, and guar gum.


Assuntos
Carbono , Nanocompostos , Azul de Metileno , Titânio , Dopamina , Alginatos , Espectroscopia de Infravermelho com Transformada de Fourier , Catálise
6.
RSC Adv ; 13(14): 9585-9594, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36968051

RESUMO

Polygonum viviparum L. (PV) is a widely used resource plant with high medicinal, feeding and ecological values. Our studies show that PV has strong antioxidant activity. However, up to date, the antioxidant activity and components in other parts were not fully elucidated. In the present study, a new online pre-column ferric ion reducing antioxidant power (FRAP)-based antioxidant reaction coupled with high performance liquid chromatography-diode array detector-quadrupole-time-of-flight mass spectrometry (HPLC-DAD-TOF/MS) was developed for rapid and high-throughput screening of natural antioxidants from three different parts of PV including stems and leaves, fruits and rhizomes. In this procedure, it was assumed that the peak areas of compounds with potential antioxidant activity in HPLC chromatograms would be greatly diminished or vanish after incubating with the FRAP. The online incubation conditions including mixed ratios of sample and FRAP solution and reaction times were firstly optimized with six standards. Then, the repeatability of the screening system was evaluated by analysis of the samples of stems and leaves of PV. As a result, a total of 21 compounds mainly including flavonoids and phenolic acids were screened from the three parts of PV. In conclusion, the present study provided a simple and effective strategy to rapidly screen antioxidants in natural products.

7.
Int J Biol Macromol ; 232: 123290, 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-36682651

RESUMO

Eco-friendly packaging material with intelligent colorimetric performance has been a requirement for food safety and quality. This work focused on a food packaging material from regenerated cellulose films that added the grape seed extract (GSE) and polyethylene glycol 200 (PEG). FTIR and SEM techniques were employed to prove the compatibility of GSE with cellulose matrix. The composite film showed an enhanced elongation at break (16.61 %) and tensile strength (33.09 MPa). The addition of PEG and GSE also improved the water contact angle of regenerated-cellulose film from 53.8° to 83.8°. Moreover, the composite films exhibited UV-blocking properties while maintaining adequate transparency. The GSE induced the regenerated films with a macroscopic change in color under different pH conditions. Furthermore, the loading of GSE slowed down the decomposition of strawberries and delayed the self-biodegradation compared with the control for more than 3 days and 18 days. The present study showed a regenerated cellulose film with acceptable mechanical and hydrophilia properties, pH-responsiveness, anti-decomposition, and delayed biodegradation performances, indicating a potential color sensor in food packaging.


Assuntos
Extrato de Sementes de Uva , Extrato de Sementes de Uva/química , Embalagem de Alimentos/métodos , Celulose/química , Resistência à Tração
8.
Nat Plants ; 9(2): 228-237, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36646829

RESUMO

Crops with broad-spectrum resistance loci are highly desirable in agricultural production because these loci often confer resistance to most races of a pathogen or multiple pathogen species. Here we discover a natural allele of proteasome maturation factor in rice, UMP1R2115, that confers broad-spectrum resistance to Magnaporthe oryzae, Rhizoctonia solani, Ustilaginoidea virens and Xanthomonas oryzae pv. oryzae. Mechanistically, this allele increases proteasome abundance and activity to promote the degradation of reactive oxygen species-scavenging enzymes including peroxidase and catalase upon pathogen infection, leading to elevation of H2O2 accumulation for defence. In contrast, inhibition of proteasome function or overexpression of peroxidase/catalase-encoding genes compromises UMP1R2115-mediated resistance. More importantly, introduction of UMP1R2115 into a disease-susceptible rice variety does not penalize grain yield while promoting disease resistance. Our work thus uncovers a broad-spectrum resistance pathway integrating de-repression of plant immunity and provides a valuable genetic resource for breeding high-yield rice with multi-disease resistance.


Assuntos
Magnaporthe , Oryza , Resistência à Doença/genética , Oryza/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Catalase/genética , Catalase/metabolismo , Alelos , Peróxido de Hidrogênio/metabolismo , Magnaporthe/metabolismo , Melhoramento Vegetal , Doenças das Plantas , Regulação da Expressão Gênica de Plantas
9.
Ann Transl Med ; 10(19): 1055, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36330402

RESUMO

Background: Annexin A3 (ANXA3) expression change is related to tumor cell proliferation and might serve as a novel diagnostic and prognostic biomarker for cancer. However, its roles and mechanisms in ovarian serous cystadenocarcinoma (OV) have not yet been elucidated. This study aimed to investigate ANXA3 expression in OV, its association with immune infiltrates, and its prognostic roles in OV. Methods: The clinical data and gene expression profiles of 379 patients (189 with low ANXA3 expression and 190 with high ANXA3 level) with an OV diagnosis confirmed by histopathological examination were downloaded from The Cancer Genome Atlas database (https://portal.gdc.cancer.gov). The survival rate and expected survival time were used to measure disease prognosis. Survival curves were generated using the Kaplan-Meier method. Cox regression and a nomogram prediction model were used to analyze the relationship between ANXA3 and the survival rate. Logistic regression was used to analyze the relationship between clinicopathological features and ANXA3 expression. Protein-protein interactions among ANXA3 relevant proteins were established using the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database. The signaling pathways interacting with ANXA3 were analyzed using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. Results: High ANXA3 expression significantly correlated with lymph node infiltration (odds ratio =0.448, P=0.025) and overall favorable survival (hazard ratio =0.69, P=0.011). The Federation International of Gynecology and Obstetrics stages, primary therapy outcome, age, and residual tumor might serve as independent prognostic factors, whereas the ANXA3 levels could not independently predict OV prognosis. ANXA3 expression negatively and statistically (P<0.05) correlated with lymphatic invasion in Th17 cells, T follicular helper (TFH) cells, and T effector memory cells. The GO/KEGG pathway enrichment analysis confirmed the involvement of three signaling pathways in controlling the interaction of extracellular vesicles with ANXA3. Conclusions: High ANXA3 expression may contribute to tumor inhibition and a favorable prognosis to a certain extent by promoting the infiltration of TFH cells and Th17 lymphocytes or acting on extracellular vesicles inducing a stronger T-cell-mediated immunity against tumor cells.

10.
Mol Plant ; 15(11): 1790-1806, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36245122

RESUMO

Grain formation is fundamental for crop yield but is vulnerable to abiotic and biotic stresses. Rice grain production is threatened by the false smut fungus Ustilaginoidea virens, which specifically infects rice floral organs, disrupting fertilization and seed formation. However, little is known about the molecular mechanisms of the U. virens-rice interaction and the genetic basis of floral resistance. Here, we report that U. virens secretes a cytoplasmic effector, UvCBP1, to facilitate infection of rice flowers. Mechanistically, UvCBP1 interacts with the rice scaffold protein OsRACK1A and competes its interaction with the reduced nicotinamide adenine dinucleotide phosphate oxidase OsRBOHB, leading to inhibition of reactive oxygen species (ROS) production. Although the analysis of natural variation revealed no OsRACK1A variants that could avoid being targeted by UvCBP1, expression levels of OsRACK1A are correlated with field resistance against U. virens in rice germplasm. Overproduction of OsRACK1A restores the OsRACK1A-OsRBOHB association and promotes OsRBOHB phosphorylation to enhance ROS production, conferring rice floral resistance to U. virens without yield penalty. Taken together, our findings reveal a new pathogenic mechanism mediated by an essential effector from a flower-specific pathogen and provide a valuable genetic resource for balancing disease resistance and crop yield.


Assuntos
Oryza , Oryza/genética , Oryza/microbiologia , Espécies Reativas de Oxigênio , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Flores/genética , Flores/microbiologia , Sementes
11.
Artigo em Inglês | MEDLINE | ID: mdl-36248411

RESUMO

Oroxylum indicum (L.) Kurz (Bignoniaceae), a traditional Chinese herbal medicine, possesses various biological activities including antioxidant, anti-inflammatory, antibacterial, and anticancer. In order to guide the practical application of O. indicum in the pharmaceutical, food, and cosmetic industries, we evaluated the effects of five different extraction techniques (maceration extraction (ME), oxhlet extraction (SOXE), ultrasound-assisted extraction (UAE), tissue-smashing extraction (TSE), and accelerated-solvent extraction (ASE)) with 70% ethanol as the solvent on the phytochemical properties and biological potential. The UHPLC-DAD Orbitrap Elite MS technique was applied to characterize the main flavonoids in the extracts. Simultaneously, the antioxidant and enzyme inhibitory activities of the tested extracts were analyzed. SOXE extract showed the highest total phenolic content (TPC, 50.99 ± 1.78 mg GAE/g extract), while ASE extract displayed the highest total flavonoid content (TFC, 34.92 ± 0.38 mg RE/g extract), which displayed significant correlation with antioxidant activity. The extract obtained using UAE was the most potent inhibitor of tyrosinase (IC50: 16.57 ± 0.53 mg·mL-1), while SOXE extract showed the highest activity against α-glucosidase (IC50: 1.23 ± 0.09 mg·mL-1), succeeded by UAE, ME, ASE, and TSE extract. In addition, multivariate analysis suggested that different extraction techniques could significantly affect the phytochemical properties and biological activities of O. indicum. To sum up, O. indicum displayed expected biological potential and the data collected in this study could provide an experimental basis for further investigation in practical applications.

12.
Heliyon ; 8(8): e10332, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36060997

RESUMO

Vernonia anthelmintica Willd (VA) is a popular medicinal plant used in local and traditional medicine to manage various disorders. In order to explore the phytochemical profile, antioxidant and enzyme modulatory activities of extracts prepared from the seeds of VA, different extraction methodologies, including modern (accelerated-ASE, ultrasound-UAE, and tissue smashing-TSE extractions) and traditional (maceration and Soxhlet) extractions, were employed and their effects on the activities of the extracts were investigated. The chemical compounds of the extracts were qualitatively analyzed by ultra-high-pressure liquid chromatography-tandem mass spectrometry (UPLC-Orbitrap-MS) technique. Among them, 11 compounds were undoubtedly identified by comparison with reference substance, while 13 compounds were tentatively identified by comparison with literature data, including 8 phenolic acids, 14 flavonoids and 2 esters were identified in the extracts. Additionally, the quantitative analysis found that ASE showed the highest extraction efficiency. The antioxidant activity was determined in vitro via six standard assays. Two key enzymes related to the diseases of vitiligo (tyrosinase) and type II diabetes (α-glucosidase) were adopted to assess the activity of VA extracts against them. All extracts showed potent antioxidant ability with a predominance for that obtained by ASE, which corroborated with the high phenolic (22.62 ± 0.23 mg gallic acid equivalent (GAE)/g extract) and flavonoid contents (68.85 ± 0.25 mg rutin equivalent (RE)/g extract). The extracts obtained by ASE, UAE and SE could increase the tyrosinase activity and all the extracts displayed remarkable inhibitory activity against α-glucosidase. This study demonstrated that the VA extracts obtained by novel extraction techniques such as ASE, could be considered as a positive candidate to be utilized by the food and medical industries, not only for obtaining bioactive compounds to be used as natural antioxidants, but possibly also for its health benefits for therapeutic bio-product development.

13.
J Pharm Biomed Anal ; 219: 114978, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-35930833

RESUMO

Finding and developing safe and effective tyrosinase (TYR) regulators is of great significance for the prevention and treatment of melanin-related skin diseases in the medical and cosmetic industries. In the current research, an approach based on offline two-dimensional liquid chromatography coupled with mass spectrometry (offline 2D LC-MS) was established to screen TYR modulators from Vernonia anthelmintica (L.) Willd. (VA) extract. Firstly, the reliability of the proposed method was evaluated by using kojic acid (inhibitor), psoralen (activator) and ranitidine as positive and negative control, respectively. Some significant parameters including incubation time, TYR concentrations, and reaction temperature were investigated. Then, the developed new method was successfully applied to rapidly discover the active compounds from VA extract. Seven TYR ligands were successfully screened by comparing the chromatographic profiles of VA extract incubated with active and denatured TYR, respectively. To verify the activity of the screened compounds, in vitro bioassay was carried out and the result showed two of them, isorhamnetin and luteolin, had good TYR inhibitory activity with IC50 value of 0.86 and 1.00 mg/mL, respectively, while the other five compounds including eriodictyol, butochalcone, chlorogenic acid, isochlorogenic acid B, and isochlorogenic acid C showed strong activation against TYR. Furthermore, molecular docking displayed that these compounds could bind to the amino acid residues in TYR catalytic pocket. The results demonstrate that the established technique can be efficiently used for rapid screening of TYR-active compounds from plant extracts.


Assuntos
Monofenol Mono-Oxigenase , Vernonia , Cromatografia Líquida , Espectrometria de Massas/métodos , Simulação de Acoplamento Molecular , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Reprodutibilidade dos Testes , Vernonia/química , Vernonia/metabolismo
14.
Front Plant Sci ; 13: 788876, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35498644

RESUMO

Magnaporthe oryzae is the causative agent of rice blast, a devastating disease in rice worldwide. Based on the gene-for-gene paradigm, resistance (R) proteins can recognize their cognate avirulence (AVR) effectors to activate effector-triggered immunity. AVR genes have been demonstrated to evolve rapidly, leading to breakdown of the cognate resistance genes. Therefore, understanding the variation of AVR genes is essential to the deployment of resistant cultivars harboring the cognate R genes. In this study, we analyzed the nucleotide sequence polymorphisms of eight known AVR genes, namely, AVR-Pita1, AVR-Pii, AVR-Pia, AVR-Pik, AVR-Pizt, AVR-Pi9, AVR-Pib, and AVR-Pi54 in a total of 383 isolates from 13 prefectures in the Sichuan Basin. We detected the presence of AVR-Pik, AVR-Pi54, AVR-Pizt, AVR-Pi9, and AVR-Pib in the isolates of all the prefectures, but not AVR-Pita1, AVR-Pii, and AVR-Pia in at least seven prefectures, indicating loss of the three AVRs. We also detected insertions of Pot3, Mg-SINE, and indels in AVR-Pib, solo-LTR of Inago2 in AVR-Pizt, and gene duplications in AVR-Pik. Consistently, the isolates that did not harboring AVR-Pia were virulent to IRBLa-A, the monogenic line containing Pia, and the isolates with variants of AVR-Pib and AVR-Pizt were virulent to IRBLb-B and IRBLzt-t, the monogenic lines harboring Pib and Piz-t, respectively, indicating breakdown of resistance by the loss and variations of the avirulence genes. Therefore, the use of blast resistance genes should be alarmed by the loss and nature variations of avirulence genes in the blast fungal population in the Sichuan Basin.

15.
Carbohydr Polym ; 288: 119400, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35450652

RESUMO

TiO2-based materials have been developing rapidly as eco-friendly photocatalysts, but the inherent defects limited their application, such as rapid recombination of photogenerated electrons and wide bandgap. To obtain high-efficient TiO2/carbonaceous photocatalysts (TiO2/C), we prepared the nanocomposite by carbonizing titanium alginate coordination compound and studied their photocatalytic performance against methylene blue (MB) under simulated sunlight irradiation. The resultant nanocomposites were characterized by FT-IR, XPS, XRD, SEM-EDS, TG-DTG, UV-DRS, and N2 adsorption-desorption analysis. The carbon mainly existed in the outer layer of TiO2/C composites, contributing to the optical sensibilization. As a result, the degradation efficiency of sample TiO2/C-20 to MB could reach 97.47% within 15 min under simulated sunlight. The samples also possessed high stability, proved by the 0.72% reduction in photodegradation ratio after five cyclic tests. The present study proved the feasibility of preparing photocatalyst from titanium-alginate coordination compound and provided an extensible approach for preparing high-efficiency photocatalysts from a polysaccharide-based coordination compound.


Assuntos
Nanocompostos , Titânio , Alginatos , Catálise , Azul de Metileno , Nanocompostos/efeitos da radiação , Espectroscopia de Infravermelho com Transformada de Fourier , Titânio/efeitos da radiação
16.
Front Pharmacol ; 13: 815479, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35281894

RESUMO

The management of hemorrhagic diseases and other commonly refractory diseases (including gout, inflammatory diseases, cancer, pain of various forms and causes) are very challenging in clinical practice. Charcoal medicine is a frequently used complementary and alternative drug therapy for hemorrhagic diseases. However, studies (other than those assessing effects on hemostasis) on charcoal-processed medicines are limited. Carbon dots (CDs) are quasi-spherical nanoparticles that are biocompatible and have high stability, low toxicity, unique optical properties. Currently, there are various studies carried out to evaluate their efficacy and safety. The exploration of using traditional Chinese medicine (TCM) -based CDs for the treatment of common diseases has received great attention. This review summarizes the literatures on medicinal herbs-derived CDs for the treatment of the difficult-to-treat diseases, and explored the possible mechanisms involved in the process of treatment.

17.
Bioresour Technol ; 351: 126919, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35240276

RESUMO

The alkali-halophilic Halomonas alkalicola M2 was isolated and developed for an open unsterile polyhydroxyalkanoate (PHA) fermentation from lignocellulose at pH 10.0 and NaCl 70 g/L. The alkaline pretreatment liquid (APL) was converted into PHA by the strain, which was significantly affected by the cultural conditions, including pH, NaCl concentration, nitrogen source, and APL concentration. The extracted PHA was composed of three monomers and similar in physicochemical properties to conventional short chain-length PHA. A record yield of 2.1 and 5.9 g of PHA was accumulated from 100 g dry bamboo powder (BP) by using APL and APL combined with hydrolysate during a 48-h open unsterile fermentation process, respectively. In summary, the alkali-halophilic H. alkalicola M2 achieved the open unsterile fermentation for lignocellulose efficient bioconversion into PHA under high alkalinity and salinity conditions and would be an ideal producer in the field.


Assuntos
Halomonas , Poli-Hidroxialcanoatos , Álcalis , Lignina , Cloreto de Sódio
18.
Neoplasma ; 69(3): 538-549, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35188401

RESUMO

Gallbladder cancer is a malignant tumor with a high mortality rate. Accumulating evidence supports that lncRNA MEG3 may halt the progression of gallbladder cancer, while the downstream mechanism is rarely studied. Thus, we aim to investigate the molecular basis of the tumor-suppressing role of lncRNA MEG3 in gallbladder cancer. The expression of lncRNA MEG3 and CXCL3 was measured in patient serum and cell lines of gallbladder cancer. The viability, apoptosis, migration, and invasion of gallbladder cancer cells were assessed following ectopic MEG3 expression, as detected by CCK-8, flow cytometry, and Transwell assays. The interaction among lncRNA MEG3, EZH2, and CXCL3 was explored through ChIP, RNA pull-down, and RIP assays. The effects of lncRNA MEG3 and CXCL3 on tumor growth were evaluated by a mouse xenograft model. lncRNA MEG3 was expressed at a low level in gallbladder cancer patient serum and cell lines, while CXCL3 was highly expressed. MEG3 overexpression repressed the malignant behaviors of gallbladder cancer cells and promoted their apoptosis. MEG3 was mainly localized in the nucleus. MEG3 bound to EZH2, and EZH2 catalyzed the H3K27 trimethylation of the CXCL3 promoter region. MEG3 downregulated CXCL3 by activating EZH2-mediated H3K27 trimethylation of CXCL3; MEG3 overexpression attenuated cancer cell malignant behaviors in vitro and suppressed tumor growth in vivo in gallbladder cancer by inhibiting CXCL3 expression. Altogether, our results indicate that lncRNA MEG3 impedes gallbladder cancer development via the EZH2-CXCL3 axis, offering potential biomarkers for gallbladder cancer management.


Assuntos
Quimiocinas CXC , Proteína Potenciadora do Homólogo 2 de Zeste , Neoplasias da Vesícula Biliar , RNA Longo não Codificante , Animais , Apoptose/fisiologia , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Quimiocinas CXC/genética , Quimiocinas CXC/metabolismo , Metilação de DNA , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Neoplasias da Vesícula Biliar/genética , Neoplasias da Vesícula Biliar/metabolismo , Neoplasias da Vesícula Biliar/patologia , Xenoenxertos , Humanos , Metilação , Camundongos , Regiões Promotoras Genéticas , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
19.
Carbohydr Polym ; 276: 118789, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34823799

RESUMO

Natural macromolecules have been used to adsorb pollutants including heavy metal ions and organic dyes due to low-cost, accessible, biodegradable, and eco-friendly advantages. Pectin, an important natural polymer, possesses abundant carboxyl and hydroxyl functional groups that can interact with the metal and organic cations via electrostatic interaction; as well as be modified by other chemicals for preparing hybrid and composite materials. The resultant materials have been employed to remove pollutants from aqueous solution; the importance of chemical composition was unlocked. Here, we reviewed contaminant removal by pectin, and pectin-based hybrid and composite materials, and highlighted the role of functional groups on pollutant removal. The removal of heavy metal ions was mainly due to surface coordination, while that of organic cations to electrostatic interactions of the functional groups. Moreover, the influence of initial contaminant concentration was critically discussed. The comprehensive review can provide valuable information on pectin and its application in contaminant removal.

20.
J Enzyme Inhib Med Chem ; 36(1): 2104-2117, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34579614

RESUMO

Tyrosinase (TYR) inhibitors are in great demand in the food, cosmetic and medical industrials due to their important roles. Therefore, the discovery of high-quality TYR inhibitors is always pursued. Natural products as one of the most important sources of bioactive compounds discovery have been increasingly used for TYR inhibitors screening. However, due to their complex compositions, it is still a great challenge to rapid screening and identification of biologically active components from them. In recent years, with the help of separation technologies and the affinity and intrinsic activity of target enzymes, two advanced approaches including affinity screening and inhibition profiling showed great promises for a successful screening of bioactive compounds from natural sources. This review summarises the recent progress of separation-based methods for TYR inhibitors screening, with an emphasis on the principle, application, advantage, and drawback of each method along with perspectives in the future development of these screening techniques and screened hit compounds.


Assuntos
Produtos Biológicos/farmacologia , Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Monofenol Mono-Oxigenase/antagonistas & inibidores , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/isolamento & purificação , Humanos , Estrutura Molecular , Monofenol Mono-Oxigenase/metabolismo , Ultrafiltração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...